首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14104篇
  免费   1859篇
  国内免费   1029篇
电工技术   633篇
综合类   802篇
化学工业   2826篇
金属工艺   3115篇
机械仪表   651篇
建筑科学   86篇
矿业工程   143篇
能源动力   354篇
轻工业   1544篇
水利工程   9篇
石油天然气   152篇
武器工业   146篇
无线电   1405篇
一般工业技术   2290篇
冶金工业   1231篇
原子能技术   1376篇
自动化技术   229篇
  2024年   29篇
  2023年   325篇
  2022年   509篇
  2021年   706篇
  2020年   623篇
  2019年   616篇
  2018年   606篇
  2017年   640篇
  2016年   575篇
  2015年   537篇
  2014年   725篇
  2013年   967篇
  2012年   866篇
  2011年   994篇
  2010年   696篇
  2009年   765篇
  2008年   724篇
  2007年   964篇
  2006年   841篇
  2005年   713篇
  2004年   670篇
  2003年   520篇
  2002年   389篇
  2001年   337篇
  2000年   259篇
  1999年   224篇
  1998年   174篇
  1997年   166篇
  1996年   152篇
  1995年   108篇
  1994年   98篇
  1993年   97篇
  1992年   83篇
  1991年   59篇
  1990年   43篇
  1989年   40篇
  1988年   23篇
  1987年   12篇
  1986年   11篇
  1985年   12篇
  1984年   7篇
  1983年   7篇
  1982年   32篇
  1981年   21篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1959年   2篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
81.
《Ceramics International》2020,46(15):23417-23426
Yttria stabilized hafnia (Hf0.84Y0.16O1.92, YSH16) coatings were sprayed by atmospheric plasma spraying (APS). The effects of thermal aging at 1400 °C on the microstructures, mechanical properties and thermal conductivity of the coatings were studied. The results show that the as-sprayed coating was composed of the cubic phase, and the nano-sized monoclinic (M) phase was precipitated in the annealed coating. The presence of M phase effectively constrained the sintering of the coating due to its superior sintering-resistance. The Young's modulus kept at a nearly same level of ~78 GPa even after annealing, and the coating annealed for 6 h yielded a maximum value of hardness but revealed a declining tendency in the Vicker's hardness with prolonged sintering time. The thermal conductivity increased from 0.8-0.95 W m-1 K-1 at as-sprayed state to 1.6 W m-1 K-1 after annealing at 1400 °C for 96 h. The dual-phase coating is promising to serve at temperatures above 1400 °C due to its excellent thermal stability and mechanical properties.  相似文献   
82.
《Ceramics International》2020,46(15):23544-23555
This investigation aimed to study the influence of carbon black on the qualifications of TiC-based materials. For this objective, two samples, namely monolithic TiC and TiC-5 wt% carbon black were sintered by spark plasma sintering (SPS) method at 1900 °C. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the as-sintered samples. Introducing carbon black enhanced the relative density of TiC significantly, reaching a near fully dense substance. Phase analysis and microstructural studies manifested the formation of non-stoichiometric TiCx in both ceramics. Although the introduction of carbonaceous additive considerably increased the thermal conductivity and flexural strength of TiC, standing at 25.1 W/mK and 658 MPa, respectively, its influence on the Vickers hardness was trivial (both ~ 3200 HV0.1 kg). Finally, the composite specimen presented a lower coefficient of friction (~ 0.31) on average compared to the undoped TiC (~ 0.34).  相似文献   
83.
《Ceramics International》2020,46(6):7374-7387
Carbon/carbon (C/C) surface micropatterning is a method of modifying the surface into the complete and regular geometry. In this work, we introduce a positive effect on bonding strength between sprayed Ca–P coating and surface micropatterning C/C substrate. Interestingly, C/C substrate coated by Ca–P coating provides textured surface for a new bone ingrowth. The sprayed Ca–P coating is then subjected to microwave-hydrothermal (MH) treatment with the aim of eliminating surface defects and obtaining a uniform purity phase. These objectives were achieved in our previous study by the MH method. The molar ratio of Ca/P in the coatings is nearly close to 1, which is far below that of Ca/P for hydroxyapatite (Ca10(PO4)6(OH)2, HA, 1.67). The purpose of this article is to transform the phases in the sprayed Ca–P coating, which owns the better bioactivity and high corrosion resistance. In order to raise the molar ratio of Ca/P, the coatings are treated under high-temperature (around 700 °C). They are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a fourier transform infrared spectra (FTIR). The bonding strength (coating/substrate), biological activity and corrosion resistance of the coatings are investigated. The resulting coatings own the different microstructures and phase compositions from the original sprayed Ca–P coating. Especially, results show that the shear strength of the sprayed Ca–P coating deposited on surface micropatterning C/C substrate increases by 61% which is more than that of the coating on non-surface micropatterning C/C substrate. Additionally, high-temperature treated coating presents a good biological activity and an excellent corrosion resistance of current density (1.3078 × 10-6 A/cm2) and potential (−0.17 VSCE).  相似文献   
84.
Thermal barrier coatings (TBCs) play a pivotal role in protecting the hot structures of modern turbine engines in aerospace as well as utility applications. To meet the increasing efficiency of gas turbine technology, worldwide research is focused on designing new architecture of TBCs. These TBCs are mainly fabricated by atmospheric plasma spraying (APS) as it is more economical over the electron beam physical vapor deposition (EB-PVD) technology. Notably, bi-layered, multi-layered and functionally graded TBC structures are recognized as favorable designs to obtain adequate coating performance and durability. In this regard, an attempt has been made in this article to highlight the structure, characteristics, limitations and future prospects of bi-layered, multi-layered and functionally graded TBC systems fabricated using plasma spraying and its allied techniques like suspension plasma spray (SPS), solution precursor plasma spray (SPPS) and plasma spray –physical vapor deposition (PS-PVD).  相似文献   
85.
Yb2SiO5 (ytterbium monosilicate) top coatings and Si bond coat layer were deposited by air plasma spray method as a protection layer on SiC substrates for environmental barrier coatings (EBCs) application. The Yb2SiO5-coated specimens were subjected to isothermal heat treatment at 1400 °C on air for 0, 1, 10, and 50 h. The Yb2SiO5 phase of the top coat layer reacted with Si from the bonding layer and O2 from atmosphere formed to the Yb2Si2O7 phase upon heat treatment at 1400 °C. The oxygen penetrated into the cracks to form SiO2 phase of thermally grown oxide (TGO) in the bond coat and the interface of specimens during heat treatment. Horizontal cracks were also observed, due to a mismatch of the coefficient of thermal expansion (CTE) between the top coat and bond coat. The isothermal heat treatment improves the hardness and elastic modulus of Yb2SiO5 coatings; however, these properties in the Si bond coat were a little bit decreased.  相似文献   
86.
Fibronectin (FN) contributes to cell adhesion, proliferation, and differentiation in various cell types. To enhance the activity of fibronectin at the sites of focal adhesion, we engineered a novel recombinant fibronectin (FNIII10) fragment connected to the peptide amphiphile sequence (PA), LLLLLLCCCGGDS. In this study, the effects of FNIII10-PA on rat mesenchymal stem cells (rMSCs) were compared with those of FNIII10. FNIII10-PA showed the prominent protein adhesion activity. In addition, FNIII10-PA showed a significantly higher effect on adhesion, proliferation, and differentiation of rMSCs than FNIII10. Taken together, the FNIII10-containing self-assembled sequence enhanced rMSCs adhesion, proliferation, and differentiation.  相似文献   
87.
Protective coatings from diethylphosphatoethyltriethoxysilane (DEPETS) have been deposited on different polymer substrates in a plasma discharge operated at atmospheric pressure. Plasma polymer chemistry and structure were characterized by means of Fourier transform infrared spectroscopy (FTIR), laser desorption ionization-mass spectrometry (LDI-MS), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). A chemical structure of the plasma polymer has been proposed based on the coating molecular characterization. Coatings were deposited on polycarbonate (PC) and polyamide 6 (PA6) substrates. The flame retardant properties of coated substrate samples were assessed using cone calorimetry and compared to those of bare substrates. A significant increase in the time to ignition (TTI), up to +143%, was recorded after coating deposition due to the formation of a high-performance barrier layer at the surface of both polymer substrates.  相似文献   
88.
89.
《Ceramics International》2020,46(14):22774-22780
Ceramic alumina nanofibers were prepared by plasma-assisted calcination (PAC) using atmospheric pressure plasma. Electrospun polyvinyl pyrrolidone/aluminium butoxide fibers were pre-treated by plasma generated in ambient air using a special type of coplanar dielectric barrier discharge. The effect of plasma on fibers and structural, chemical and crystalline properties of obtained ceramic nanofibers were characterized using X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy, Energy-dispersive X-ray Spectroscopy and X-Ray Diffraction. Thermogravimetric and differential thermal analysis were used for the study of thermal behaviour of untreated and plasma-treated samples. The ceramic fibers prepared by PAC exhibit suitable chemical composition, higher porosity, high length of fibers and better crystalline properties with simultaneous simplifying of the sintering process. The plasma pre-treatment of fibers results in a shortening of following thermal treatment, decrease of the required temperature and excludes a slow temperature increase as prevention of fibrous structure degradation typical in preparation of ceramic fibers by polymer-template techniques.  相似文献   
90.
Decomposition of formic acid biomass to generate hydrogen is vital for coping with fossil energy depletion, environmental pollution, and developing clean, efficient, safe, and sustainable modern energy system. In this study, a PdAu/C−C bimetallic catalyst was prepared by the co-impregnation method followed by an atmospheric pressure (AP) cold plasma treatment to synthesize PdAu/C−P catalysts. The resulting PdAu/C−P showed excellent catalytic activity for the formic acid dehydrogenation (FAD) reaction. The total volume of H2 and CO2 released from the FAD reaction was about 375 mL after 4 h at 50 °C, and the initial turnover frequency (TOFinitial) was 808.6 h−1. We used X−ray diffractometry (XRD), temperature programmed reduction (TPR) and high-resolution transmission electron microscopy (HRTEM) to show that plasma can effectively promote the redispersion of Pd−Au particles on the surface of the support. The average particle size of PdAu/C−P (3.5 ± 1.5 nm) was less than PdAu/C−C (4.4 ± 1.9 nm) and uniformly distributed. X-ray photoelectron spectroscopy (XPS), TPR, and HRTEM showed that PdAu/C−P has a higher degree of alloying. In addition, the strong electric field in the plasma facilitated more metal sites located on the outer surface of the support in PdAu/C−P, and the atomic ratio of M/C (M = Pd and Au) (0.0134) was much larger than that of PdAu/C−C (0.0060). The apparent activation energy (Ea) of PdAu/C−P for the FAD reaction was only 27.25 kJ mol−1, and it had much higher activity and stability than the commercial Pd/C (Sigma−Aldrich). The total volume of H2 and CO2 produced over the PdAu/C−P for three cycles was 1.33, 5.87, and 8.56 times that of commercial Pd/C. Overall, the cold plasma enhanced the degree of alloying, promoted the redispersion of agglomerated particles, and regulated the surface enrichment of the active metal components. This is of great significance for guiding the preparation of high−performance multi-metal catalysts by cold plasma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号